首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246238篇
  免费   33862篇
  国内免费   26033篇
电工技术   21454篇
技术理论   9篇
综合类   18203篇
化学工业   48838篇
金属工艺   10694篇
机械仪表   14807篇
建筑科学   13232篇
矿业工程   3934篇
能源动力   7144篇
轻工业   19891篇
水利工程   3547篇
石油天然气   5784篇
武器工业   2224篇
无线电   34174篇
一般工业技术   26697篇
冶金工业   7450篇
原子能技术   3870篇
自动化技术   64181篇
  2024年   592篇
  2023年   4189篇
  2022年   7492篇
  2021年   10566篇
  2020年   8505篇
  2019年   7853篇
  2018年   7504篇
  2017年   10189篇
  2016年   11954篇
  2015年   13805篇
  2014年   13992篇
  2013年   16936篇
  2012年   17967篇
  2011年   19301篇
  2010年   14309篇
  2009年   14346篇
  2008年   15621篇
  2007年   18091篇
  2006年   17689篇
  2005年   15095篇
  2004年   12175篇
  2003年   9964篇
  2002年   7398篇
  2001年   5400篇
  2000年   4212篇
  1999年   3592篇
  1998年   2780篇
  1997年   2309篇
  1996年   1981篇
  1995年   1715篇
  1994年   1550篇
  1993年   1149篇
  1992年   960篇
  1991年   781篇
  1990年   694篇
  1989年   540篇
  1988年   410篇
  1987年   257篇
  1986年   252篇
  1985年   324篇
  1984年   304篇
  1983年   215篇
  1982年   245篇
  1981年   155篇
  1980年   153篇
  1979年   62篇
  1978年   39篇
  1977年   43篇
  1964年   40篇
  1962年   67篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
《Ceramics International》2022,48(2):2377-2384
Bi2O3, Y2O3 and MgO co-doped BaTiO3 (BT)-based X8R ceramics were synthesized successfully for the first time. The effects of the sintering temperature and Bi2O3, Y2O3 and MgO dopants on the dielectric properties were investigated systematically. Bi2O3 doping can increase the Curie temperature (Tc), but reduces the overall dielectric permittivity. On the other hand, Y2O3 doping is beneficial to the formation of core-shell microstructure and the increase of Tc, whereas MgO can prevent excessive Y2O3 from diffusing into grain core, and thereby further contributes to the generation of the core–shell microstructure. The generation of the typical core-shell microstructure was confirmed and investigated in detail by using transmission electron microscopy (TEM). It is argued that the synergistic effects of Bi2O3, Y2O3 and MgO co-doping in terms of the formation of the core-shell structure and the increase of Tc, can help improve the temperature stability of the dielectric permittivity effectively. Increasing the sintering temperature leads to an increase in the grain size, which in turn leads to an increase in the overall dielectric permittivity due to the grain size effect.  相似文献   
22.
《Ceramics International》2022,48(4):4710-4721
In this study, AA5083 sheets were reinforced with four different hybrid nanoparticles by friction stir processing (FSP) for the development of surface nanocomposites used in advanced engineering applications. The present research focused on improving the properties and tribological behaviour of AA5083 alloy surfaces, including novel hybrid nanoparticles and the intermetallic phase formed during FSP. A tribometer tester with a constant normal load was used to examine the tribological performance of the hybrid composites. After the wear test, a surface profiler inspector was used to analyse the morphology and surface roughness of the examined materials. The Vickers micro-hardness of the base metal and the manufactured composites were measured. During FSP, a new intermetallic phase of AlV3 was successfully formed at 300–400 °C in the hybrid nanocomposites containing VC particles. The reinforcements resulted in additional grain refining than FSP. The AA5083/Ta2C–Al2O3 exhibited the greatest grain refinement, a sixty-fold reduction in grain size compared to that of the base alloy. The results revealed that the hybrid nanocomposites containing VC particles demonstrated the most significant microhardness values inside the stirred zone as a result of the presence of the AlV3 phase, which was increased by 25–30%. Moreover, the mechanical properties were significantly improved for all manufactured nanocomposites. The tensile strength was increased by 28% through the hybridisation of AA5083 using a hybrid of VC-GNPs. The dispersion of Ta2C-GNPs and VC-GNPs in the matrix led to excellent interfacial adhesion, resulting in an enhancement in the mechanical properties. The AA5083/VC-GNPs surface composite outperformed other manufactured composites regarding wear resistance. In addition, due to GNPs soft nature, it reduced the coefficient of friction (COF) of the manufactured composites by 20–25% compared to other reinforcements.  相似文献   
23.
In this article, an adaptive denoising method is suggested to accurate investigate the optical and structural features of polymeric fibers from noisy phase shifting microinterferograms. The mixed class of noise that may produce in the phase-shifting interferometric techniques is established. To our knowledge, this is an early study considered the mixing noises that may occur in microinterferograms. The suggested method utilized the convolution neural networks to detect the noise class and then denoising, it according to its class. Four convolution neural networks (Googlenet, VGG-19, Alexnet, and Alexnet–SVM) are refined to perform the automatic classification process for the noise class in the established data set. The network with the highest validation and testing accuracy of these networks is considered to apply the suggested method on realistic noisy microinterferograms for polymeric fibers, polypropylene and antimicrobial polyethylene terephthalate)/titanium dioxide, recoded using interference microscope. Also, the suggested method is applied on noisy microinterferograms include crazing and nanocomposite material. The demodulated phase maps and the three-dimensional birefringence profiles are calculated for tested fibers according to the suggested method. The obtained results are compared with the published data for these fibers and found to be in good agreements.  相似文献   
24.
25.
It is a common observation that whenever patients arrives at the front desk of a hospital, outpatient clinic, or other health-associated centers, they have to first queue up in a line and wait to fill in their registration form to get admitted. The long waiting time without any status updates is the most common complaint, concerning health officials. In this paper, UrNext, a location-aware mobile-based solution using Bluetooth low-energy (BLE) technology is presented to solve the problem. Recently, a technology-oriented method, the Internet of Things (IoT), has been gaining popularity in helping to solve some of the healthcare sector’s problems. The implementation of this solution could be illustrated through a simple example of when a patient arrives at a clinic for a consultation. Instead of having to wait in long lines, that patient will be greeted automatically, receive a push notification of an admittance along with an estimated waiting time for a consultation session. This will not only provide the patients with a sense of freedom but would also reduce the uncertainty levels that are generally observed, thus saving both time and money. This work aims to improve the clinics’ quality of services, organize queues and minimize waiting times, leading to patients’ comfort while reducing the burden on nurses and receptionists. The results demonstrate that the presented system is successful in its performance and helps achieves a pleasant and conducive clinic visitation process with higher productivity.  相似文献   
26.
Ceramic design based on reducing friction and wear-related failures in moving mechanical systems has gained tremendous attention due to increased demands for durability, reliability and energy conservation. However, only few materials can meet these requirements at high temperatures. Here, we designed and prepared a Sn-containing Si3N4-based composite, which displayed excellent tribological properties at high temperatures. The results showed that the friction coefficient and wear rate of the composites were reduced to 0.27 and 4.88 × 10?6 mm3 N?1 m?1 in air at 800 °C. The wear mechanism of the sliding pairs at different temperatures was revealed via detailed analyses of the worn surfaces. In addition, the tribo-driven graphitization was detected on the wear surfaces and in the wear debris, and the carbon phase was identified by SEM, TEM, and Raman spectrum.  相似文献   
27.
《Ceramics International》2022,48(5):6322-6337
To optimize the corrosion, bioactivity, and biocompatibility behaviors of plasma electrolytic oxidation (PEO) coatings on titanium substrates, the effects of five process variables including frequency, current density, duty cycle, treatment time, and electrolyte Ca/P ratio were evaluated. In our systematic study, a Taguchi design of experimental based on an L16 orthogonal array was used. For this, the coatings characteristics such as the surface roughness, wettability, rutile to anatase and Ca/P ratios, and corrosion polarization resistance were investigated. After determining the optimum process variables for each response, the apatite forming ability in SBF (bioactivity behavior) and MG63 cell attachment and flattening (biocompatibility behavior) for two groups of coatings were examined. The first group was optimized based on the maximum corrosion polarization resistance and the variables were set as the frequency of 2000 Hz, the current density of 5 A/dm2, the duty cycle of 30%, the treatment time of 5 min, and the Ca/P ratio of 0.65 at. % in the electrolyte. For the second group, the maximum surface roughness, greatest Ca/P ratio, and highest wettability as well as the minimum rutile to anatase ratio in coatings, could be obtained when the variables were set as the frequency of 10 Hz, the current density of 12.5 A/dm2, the duty cycle of 50%, the treatment time of 12.5 min, and the Ca/P ratio of 1.70 at. % in the electrolyte. The results showed that while both groups of coatings indicated a significant apatite forming ability and can serve as bioactive coatings, a proper attachment and flattening of cells and consequently, the favorable biocompatibility properties were seen only in the first group.  相似文献   
28.
《Ceramics International》2022,48(5):6372-6384
Sm2O3-HfO2 series ceramics were synthesized at high temperature using the solid-state reaction. The phase stability, thermo-physical and infrared emission properties of Sm2Hf2O7 (SHO) and Sm2Hf2O7-44.83 wt%HfO2 (25S/H) composite ceramics were comparatively investigated. Furthermore, their calcium magnesium aluminosilicate (CMAS) corrosion was conducted at 1250°C for different times. The results reveal that both SHO and 25S/H ceramics have excellent phase stability at 1600°C as well as excellent sintering resistance. SHO still exhibits slightly lower thermal conductivity and lower hardness and Young's modulus, higher thermal expansion coefficient (CTE) and fracture toughness as well as higher infrared emittance (0.899 at 800°C) than 25S/H composite with the excessive HfO2 inside. Both SHO and 25S/H ceramics react with CMAS to form a relatively compact reaction layer, which can effectively prevent the penetration of CMAS. These results preliminarily indicate that SHO ceramic can be proposed as an alternative material of the traditional YSZ for high-temperature thermal protective applications thanks to its compatible performance of low thermal conductivity and high infrared radiation, etc.  相似文献   
29.
《Ceramics International》2022,48(9):11988-11997
We have studied peculiarities in the formation of single-crystalline barium titanate (BaTiO3) nanorods from a glycolate-mediated complex via a single-step hydrothermal process under different supersaturation (SR) conditions. X-ray diffraction (XRD) showed the formation of pure BaTiO3 with an SR of above 19. The tetragonality for the BaTiO3 (c/a) reached 1.013 at SR = 19–29 and dropped to 1.010 for SR = 39. According to the transmission electron microscopy (TEM) and XRD analyses, the rod-shaped particles exhibited single crystallinity and crystal growth along the [001] plane. With scanning electron microscopy (SEM), the morphological evolution from a plate-shaped intermediate precursor (SR = 6–9) to a rod-shaped product with an aspect ratio of 6–9 (SR = 19–29), and to non-polar material with an irregular structure (SR = 39), was observed. The negative slope, linear dependence of the particles’ width and length on the supersaturation level in the range SR = 19–39 was established for the first time. The replacement of the prevailing crystallization mechanism from in-situ topotactic transformation into dissolution-precipitation above SR = 19 was observed. It was shown that with a simple regulation of the SR, the structural and morphological characteristics of the obtained BaTiO3 nanoparticle can be effectively tuned.  相似文献   
30.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号